生命科學

血液樣本品質管理

Cognex Deep Learning 可分析經離心處理血液是否適當分離

Blood_sample_quality_management

相關產品

In-Sight D900

In-Sight D900 視覺系統

採用 In-Sight ViDi 深度學習視覺軟體

VisionPro ViDi Product Tile

VisionPro Deep Learning

深度學習工業圖像分析的圖形化程式設計環境

血液檢驗分析儀仰賴正確準備的樣本與檢驗設定。經離心處理的血液樣本是依照不同指標 (例如血紅素,膽紅素及脂肪乳指數) 評級,及依照濁度與血漿顏色評定品質分數。依照架上樣本的裝載方式與方向顯示的外觀,所有上述指標可能會有所不同。品質評估攸關高度自動化實驗室工作流程的健全度,而血液分離和標籤與管蓋存在與否,都是品質評估時的重要因素。也由於基於判別的因素眾多,通常要以人工進行這項檢測。

深度學習圖像分析可確定經離心處理的血液是否有效分離成明顯的液相 (血漿,白血球層及紅血球),並依照處理時所用的標準,將樣本分類。康耐視深度學習分類工具可基於一組不同類別的帶注釋的圖像進行訓練,直到成功總結和概括不同階段的正常外觀。在運作期間,Cognex Deep Learning 可分揀單一小瓶內的多種類別,挑出如血漿顏色與濁度,白血球層體積及離心處理狀態等血液品質因素,同時忽略管蓋狀態與標识存在與否等不相關的品質。依照類別,區分合格樣本與不合格樣本。這項訊息亦能提供有關抽取和再次離心處理樣本的實用流程控制訊息。

精選康耐產品

取得產品支援與訓練等等

加入 MyCognex

是否有任何疑问?

世界各地的康耐视代表可以随时为您提供支持,满足您的视觉和工业读码需求。

聯絡我們
Loading...