전자산업

외관 결함 분석

스마트폰에서 감지하기 힘들거나 예측 불가능한 결함을 검출

Cosmetic defect analysis

관련 제품

In-Sight D900

In-Sight D900

In-Sight ViDi 딥러닝 기반 비전 소프트웨어로 작동

VisionPro ViDi Product Tile

VisionPro Deep Learning

딥러닝 기반 산업용 이미지 분석을 위한 그래픽 프로그래밍 환경

스마트폰이 완전히 조립되고서 포장 단계로 진행되기 전에 긁힘, 균열, 부서진 흔적, 흠집, 잘못된 얼라인먼트, 변색, 그 밖에 하우징과 커버 글래스 어느 곳에나 존재할 수 있는 결함을 검사해야 합니다. 이러한 결함은 일반적으로 기기의 기능에는 영향을 주지 않지만, 제품의 외관을 손상시킵니다.

기존의 규칙 기반 비전 애플리케이션의 경우 사전 정의된 영역에 있는 긁힘과 같은 전형적인 결함이나 스크린 코너에 나타나기 쉬운 균열을 감지하도록 훈련할 수 있지만, 가능한 결함의 범위가 극히 넓고 휴대폰의 어디서든 나타날 수 있습니다. 하우징의 변색, 로봇 암의 충격으로 인한 흠집 등 상대적으로 잦지 않은 결함이라도 포장 전에 검출해내야 합니다. 휴대폰의 생산 속도를 고려할 때, 사람의 검사로는 효율이 떨어지고 일관된 결과를 얻기 어렵습니다.

코그넥스 딥러닝의 결함 감지 툴은 제조 공정 전체에서 허용되지 않는 광범위한 제품 결함을 찾도록 학습할 수 있습니다. 이 툴은 스크린, 밴드, 뒷면을 검사해 스마트폰의 어디서나 가능한 흠집, 긁힘, 변색의 조합을 검출합니다. 모든 결함을 탐지하기 위해 이 검사는 특수 조명과 적절한 부품 프레젠테이션을 활용해 외관상 결함이 없는 제품만이 포장 단계로 이동하도록 합니다.

주요 Cognex 제품

제품 지원 및 교육 신청

MyCognex 가입

질문이 있으십니까?

전 세계 어디에서든 코그넥스 담당자들이 여러분의 비전과 산업용 바코드 판독 관련 문제를 지원합니다.

연락처
Loading...