Pharmaceutical

Farmacéutica y Médica

Verificación del montaje de la aguja y la jeringuilla

Asegurar una conexión adecuada entre la aguja y la jeringuilla

Defect detected on a syringe assembly

Productos relacionados

In-Sight D900

In-Sight D900

Impulsado por el software para visión basado en el Deep Learning In-Sight ViDi

VisionPro ViDi Product Tile

VisionPro Deep Learning

Entorno de programación gráfica para análisis de imágenes industriales basado en el Deep Learning

Las jeringuillas precargadas tienen la aguja preinstalada o integrada. El extremo del cilindro de la jeringuilla se calienta y se forma un cono o boquilla. La cánula de la aguja se inserta en el cono y se asegura típicamente con un adhesivo curado por UV. En el caso de una jeringuilla de polímero, la aguja se fija a través de un moldeo por inserción.

Es necesario inspeccionar el punto de conexión del vidrio o el plástico de la jeringuilla con la aguja para asegurarse de que no hay chips, burbujas de aire u otros defectos, y que la cantidad y la colocación del adhesivo es correcta. El aspecto puede variar dependiendo del tipo de adhesivo, y esto puede cambiar con el tiempo y entre lotes.

En el pasado, las dificultades en la inspección de los adhesivos de la unión de las agujas han limitado la variedad de posibilidades de calibre y longitud de las agujas integradas.

La inspección del montaje de la aguja y la jeringuilla se realiza mejor con una combinación de Deep Learning de Cognex y algoritmos de visión tradicionales. Las diversas dimensiones del cono, como el diámetro, la longitud, los distintos ángulos y la planitud del extremo, pueden medirse fácilmente con un sistema de visión artificial estándar, como el In-Sight 8505P.

Sin embargo, la inspección de los componentes a través de material transparente reflectante, ya sea vidrio o polímero, es una tarea para la tecnología de Deep Learning. El Deep Learning de Cognex se entrena en una variedad de boquillas aceptables con agujas insertadas. Cualquier montaje de aguja y jeringuilla que muestre propiedades fuera del rango aceptable, que podrían incluir burbujas, grietas, adhesivo inadecuado para la unión de la aguja, problemas con el cono u otras inclusiones, es marcado como un defecto y rechazado de la línea. Dado que el Deep Learning de Cognex puede entrenarse fácilmente en nuevos calibres o longitudes de agujas, los fabricantes evitan la larga y complicada reprogramación que se experimentaría con la visión artificial convencional.

PRODUCTOS DESTACADOS DE COGNEX

ACCESO A ASISTENCIA Y CAPACITACIÓN PARA PRODUCTOS Y MÁS

Únase a MyCognex

¿Tiene alguna pregunta?

Los representantes de Cognex están disponibles en todo el mundo para respaldar sus necesidades de visión y de lectura de códigos de barras industriales.

Contáctenos
Loading...