Why Medical Imaging is the Next Frontier for Deep Learning

Deep learning banner

Medical imaging, which includes radiological x-rays, ultrasounds, and NMRs, has traditionally required the flexibility of the human eye to detect anomalies. Computers are famously confused by busy backgrounds and image quality issues, such as specular glare. This makes it incredibly difficult for traditional machine vision algorithms to locate an object or region of interest with precision, especially to identify abnormalities amidst an unstructured scene. It can be time consuming and difficult, if not impossible, for automated system to successfully identify the region of interest while ignoring irrelevant features.

Today, however, deep learning-based image analysis can automate the search for biological anomalies reliably and repeatedly and robustly. This is changing the role of today’s radiologist, who can now take advantage of a computer-aided diagnosis (CAD) for medical imaging. Whether searching for a specific anomaly, such as tumor, or any deviation from the body’s normal appearance, Cognex Deep Learning combines the flexibility of a human inspector’s eye with the speed and robustness of a computerized system. Two specialized tools aid this process. The location tool identifies the region of interest, such as a certain organ, even when the background is visually confusing or poorly contrasted. The defect detection tool uses a set of training images to develop a reference model of that organ’s normal appearance, as well as specific types of anomalies, so that it can flag any anomalies which digress from the normal physiology of the targeted zone as defects.

Some great examples include using deep learning-based tools to localize and identify organs or implants in an x-ray. The location tool can locate a specific organ by learning its distinguishing features. To train the location tool, all you need to provide are images where the targeted features are marked. Similarly, deep learning-based defect detection and segmentation tools, like the Cognex Deep Learning defect detection tool, can help identify anomalies in medical image. The defect detection tool develops a reference model of an organ’s normal appearance, as well as specific anomalies, based on a set of sample images. Any anomalies which digress from the normal physiology of the targeted zone are flagged for a CAD computer-aided diagnosis by an expert radiologist.

To learn more about exciting new deep learning applications in medical imaging, download the free guide: Cognex Deep Learning for Life Sciences.

Related Blogs:


Join MyCognex


Cognex representatives are available worldwide to support your vision and industrial barcode reading needs.

Contact Us